PROCESS MINING APPLICATIONS AND USE CASES

Fareed Zandkarimi (M.Sc.) PhD Candidate and Research Assistant Chair of Enterprise Systems University of Mannheim

17.06.2021 ۲۷ خرداد ۱۴۰۰

Fareed Zandkarimi, M.Sc. Doctoral student at the Chair of Enterprise Systems University of Mannheim

Education:

- B.Sc. Information Technology, Iran
- M.Sc. Electronic Commerce, Iran
- M.Sc. Business Informatics (Data and Web Science), University of Mannheim
- Doctoral student, University of Mannheim

Industry experience:

Information Technology associate (in Iran)

Big-Data software engineer at Celonis

Research interests:

 [Predictive] Process Mining, Visual Analytics, Business Intelligence, Business value generation with process mining

University of Mannheim is located in the heart of Europe and has a strong focus on business administration

- Founded in 1907
- 12,000 students
- 5 faculties with focus on social science and business research
- Strong connections to industry as well as international university landscape

- 44 professors & 80 honorary professors / adjunct faculty
- 150+ doctoral students
- 36 chairs in 7 different areas, including:
 - Information systems
 - Operations management
- First German university with triple crown accreditation (AACSB, EQUIS & AMBA)
- Only German faculty among top 100 global business schools in terms of publications in high-ranked journals¹

The Business School of the University of Mannheim is **one of the leading institutions for business research and education in Europe**. It stands for excellent research, strong internationality, and a distinct practice focus.

German university ranking 2019 (Wirtschaftswoche¹)

Management / Business Administration			Economics		
1	Mannheim	29.5%	1	Munich, LMU	18.6%
2	Cologne	21.5%	2	Mannheim	17.5%
3	Munich, LMU	20.3%	3	Cologne	16.8%
4	Frankfurt a. M., Goethe	16.2%	4	Frankfurt a. M., Goethe	15.3%
5	Münster	15.9%	5	Berlin, Free	15.1%
6	Oestrich-Winkel, EBS	15.2%	6	Berlin, Humboldt	14.8%
7	Berlin, Humboldt	15.1%	7	Bonn	12.8%
8	Vallendar, WHU	14.8%	8	Heidelberg	10.8%
9	Frankfurt, School of Finance & Management	13.6%	8	Göttingen	10.8%
10	Hohenheim	13.3%	10	Tübingen + Hannover	10.3%

1 Important ranking in Germany. Based on a survey among corporate HR executives (2019-05-03). The Financial Times "Masters in Management" ranking lists Mannheim at place 14 worldwide and as the best business school in Germany (http://rankings.ft.com/businessschoolrankings/masters-in-management-2018).

Agenda

01	What is a process?	
02	Petri Nets and BPMN recap	0
03	Basics of Process Mining	
04	Types and Perspectives	
05	Use Cases	
06	Q&A	?

Wiliam Edwards Deming Leading Management Thinker in the Field of Quality (1900-1993) If you can't describe what you are doing as a **process**, you don't know what you're doing.

اگر نمیتوانید کاری که انجام میدهید را فرایندوار توضیح دهید، نمیدانید چهکار میکنید!

TO-BE vs. AS-IS PROCESSES

Reality: As-Is Processes (De-Facto)

VS.

Expectations: To-Be Processes (De-Jure)

TO-BE vs. AS-IS PROCESSES

Reality: As-Is Processes (De-Facto)

VS.

Expectations: To-Be Processes (De-Jure)

TO-BE vs. AS-IS PROCESSES

Reality: As-Is Processes (De-Facto)

VS.

Expectations: To-Be Processes (De-Jure)

DEFINITION

A business process or business method is a collection of related, structured activities or tasks that in a specific sequence produces a service or product (serves a particular business goal).

Prof.dr.ir. Wil van der Aalst Father of Process Mining! The idea of process mining is to discover, monitor and improve real processes (i.e., not assumed processes) by extracting knowledge from event logs readily available in today's (information) systems.

Agenda

01	What is a process?	
02	Petri Nets and BPMN recap	
03	Basics of Process Mining	
04	Types and Perspectives	
05	Use Cases	
06	Q&A	?

Initial Examination Allergy Test Blood Test Radiology Test Diagnosis Home Care

PETRI NETS, RECAP

BPMN – BUSINESS PROCESS MODEL AND NOTATION

Agenda

01	What is a process?	
02	Petri Nets and BPMN recap	
03	Basics of Process Mining	
04	Types and Perspectives	
05	Use Cases	
06	Q&A	?

PROCESS MINING EVENTLOG

1	35654423	timestamp	activity			
1	35651123		activity	resource	cost	
1	55054425	30-12-2010:11.02	register request	Pete	50	
	35654424	31-12-2010:10.06	examine thoroughly	Sue	400	
	35654425	05-01-2011:15.12	check ticket	Mike	100	
	35654426	06-01-2011:11.18	decide	Sara	200	•••
	35654427	07-01-2011:14.24	reject request	Pete	200	
1.12	35654483	30-12-2010:11.32	register request	Mike	50	
2	35654485	30-12-2010:12.12	check ticket	Mike	100	
	35654487	30-12-2010:14.16	examine casually	Pete	400	
	35654488	05-01-2011:11.22	decide	Sara	200	
	35654489	08-01-2011:12.05	pay compensation	Ellen	200	
	35654521	30-12-2010:14.32	register request	Pete	50	
3	35654522	30-12-2010:15.06	examine casually	Mike	400	
	35654524	30-12-2010:16.34	check ticket	Ellen	100	
	35654525	06-01-2011:09.18	decide	Sara	200	
	35654526	06-01-2011:12.18	reinitiate request	Sara	200	
	35654527	06-01-2011:13.06	examine thoroughly	Sean	400	
	35654530	08-01-2011:11.43	check ticket	Pete	100	•••
	35654531	09-01-2011:09.55	decide	Sara	200	
	35654533	15-01-2011:10.45	pay compensation	Ellen	200	
	35654641	06-01-2011:15.02	register request	Pete	50	
4	35654643	07-01-2011:12.06	check ticket	Mike	100	
	35654644	08-01-2011:14.43	examine thoroughly	Sean	400	
	35654645	09-01-2011:12.02	decide	Sara	200	
	35654647	12-01-2011:15.44	reject request	Ellen	200	

A process consists of CASES

- A case consists of EVENTS, relating to exactly one case
- Events within a case are ORDERed
- Events can have ATTRIBUTES (time, cost, resource, activity)

PROCESS MODEL DISCOVERY

Case id	Trace	b
1 2 3 4 5 6 	$ \langle a, b, d, e, h \rangle \langle a, d, c, e, g \rangle \langle a, c, d, e, f, b, d, e, g \rangle \langle a, d, b, e, h \rangle \langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle \langle a, c, d, e, g \rangle \dots$	examine thoroughly start register request

1 See the 'happy paths'

The level of detail of the process can be **easily adjusted**. The number of variants displayed can be reduced in order to show only the **core process**.

👗 Varanta — 🔶

2 Explore deviations

Increasing the number of variants, i.e., the level of detail, the process will reveal **less common paths and activities**. Spot **deviations** and **inefficient loops**.

3 Get the big picture

Going full-throttle on the process by increasing to 100% data coverage. Nothing escapes the watchful eye – especially if this augmented with drill-down functionalities to spot long-runners, unusual process paths, etc.

🙏 Varanta 🛛 🔶 🔶

Agenda

PROCESS MINING TYPES AND PERSPECTIVES

A few process variants are explaining majority of the entire processes!

PARETO APPLIES HERE, TOO

PROCESS EXCELLENCE MATURITY CURVE

Agenda

Purchase-to-Pay (P2P)

- Core business process
- High number of transactions
- Complexity:
 Requests, approvals, timelines
- Various departments involved: Procurement, Accounting, Warehousing,...

Let's find \$10,000,000 trapped in your business.

ANALYSIS

How often do document changes occur during the purchasing process?

Please note: all screenshots used are merely exemplary and have not been taken from real customer data. Hence, they do not correspond with the calculations made in this business case.

MEASURES & POTENTIALS

Using Celonis, often occurring changes and their root causes could be identified and analyzed. In comparable use cases, manual effort could be reduced by up to 40%.

OVERALL POTENTIAL

RESULTS:

Duration of manual change:20 min.Occurrences per year:199,752

Potential for optimization: 40 %

BEFORE:

199,752 *20 min. = 3,995,040 min.= 66,584 SAVINGS:

> 66,584 h * 40% = 26,633 h/Year = 14 FTE = 999,676 €/Year

1 FTE = 5 Days/Week * 8h * (52-5) Weeks/Year = 1880 Hours/Year = 70.000€

1 m € SAVINGS

ANALYSIS

How often do rework activities occur during the purchasing process?

Please note: all screenshots used are merely exemplary and have not been taken from real customer data. Hence, they do not correspond with the calculations made in this business case.

MEASURES & POTENTIALS

Rework activities slowed down the process and led to significant manual effort. With Celonis, often occurring rework activities could be identified and reduced by up to 50%.

OVERALL POTENTIAL

EFFORT OF REWORK ACTIVITIES:

Activity	#	Time	Sum
Change Price	152,092	15 min	2,280,000 min
Block Purchase Order	52,148	25 min	1,303,700 min
Delete Purchase Order	25,920	25min	648,000 min
Refuse Purchase Order	26,064	30min	781,920 min

SAVINGS:

5,013,620 Min * 50% = 47,780 h/Year

= 22.2 FTE =1,555,644€/Year

1 FTE = 5 Days/Week * 8h * (52-5) Weeks/Year = 1880 Hours/Year = 70.000€

1.6 m € SAVINGS

ANALYSIS

How high are automation rates of process activities and can they be improved further?

Please note: all screenshots used are merely exemplary and have not been taken from real customer data. Hence, they do not correspond with the calculations made in this business case.

MEASURES & POTENTIALS

By improving the automation rate of certain activities, the efficiency of the purchasing process could be improved. In particular, the automation rates of the following activities could be optimized (amongst others):

Purchase Requisition Creation | Purchase Order Creation | Goods Receipt | Payment Block Removal | Purchase Order Approval

OVERALL POTENTIAL RESULTS: Cases per year: 1,116,080 Potential for automation: 62% Time saved per case: 10 Min. SAVINGS: 1,116,080 * 60% * 10 Min = 111,608 h/Year = 59.3 FTE/Year = 4,155,617 €/Year

1 FTE = 5 Days/Week * 8h * (52-5) Weeks/Year = 1880 Hours/Year = 70.000€

4.1 m € SAVINGS

Process Inefficiency

How to Identify Process Inefficiencies?

- Conformance Checker

Custom Components

Always prioritize significant Opportunities by briefly evaluating findings for impact of the inefficiency (includes frequency) and effort needed to realize the opportunity. When evaluating the impact, also consider when in the process the inefficiency occurs.

Find Drivers for Inefficiencies

Consider absolute frequency to analyze where your inefficiency appears most and consider relative frequency to search for possible drivers.

Drill Down to a document level and look at specific Documents in Celonis (Case Explorer) or the Source System.

Optional

 Create Purchase Requisition Item • The Ney 14, 2001 2 47 PM
 Create Purchase Order Nem
 Print and Send Purchase Order - +41
1

Case Study – Speed up Cycle Times

Improve payment terms:

Identify unfavorable payment terms with negative effect on working capital

Reduce inventory cost:

Analyze root causes for violations and reduce inventory whenever possible

Reduce Internal Cycle Times:

Make sure invoices are created with no delay to collect money earlier

Others:

...

Selected Customers applying Celonis in Sales

Cycle Times by Sales Order A	mount	pos
Sales Order Amount	# Sales↓	Net Order Va
a) 0 - 100€	537,217	16,270
b) 100 - 500€	291,276	67,827
c) 500 - 1.000€	31,262	21,518
d) 1.000 - 10.000€	15,486	35,796
e) > 10.000€	406	1,396

Slow cycle times

occur all the time and slow order confirmations, delayed goods issue or delayed invoicing massively impact cash collection. With the Intelligent Business Cloud, it is easy to identify reasons for longrunners, use the Action Engine to take immediate action and sitively impact king capital. tal Cycle Ti...

36 Hours

37 Hours

29 Hours

38 Hours

44 Hours

790 Hours

792 Hours

790 Hours

796 Hours

794 Hours

972€

039€

000 €

Late payments delay cash collection and impact working capital, for instance:

- Slow invoicing
- Unfavorable payment terms
- Bad payment morale

Example above: 500,000 orders take more than 14 days between creation and shipping

Analyze: Understand root causes for late payments

 Goods Issue Order-to-Cash

 Find out what the throughput time is between receiving a sales order and is...

 SAP

 Cycle Times by Sales Order Amount

 Sales Order Amount

Where payment terms need to

customers are responsible for

a majority of late payments.

Intelligent Apps help you to

Which customers are

responsible for delays

Example above: Certain

determine

adjusted

Operationalize: Proactively

Action Engine Skills help you to proactively avoid late payments:

- Ensure quick invoicing
- Automated dunning
- Etc.

Example above: The skill automates the dunning process dependent on payment terms. The Transformation Center helps you to measure & document success stories.

- 500,000 orders >14d between order and shipping (\$ 600M)
- 20% reduction (7d average delay)
- 10% return on invested capital

Example above: \$600M * 20% * 10% * 7d delay /365

= \$ 230K annual savings

OPTIMIZE WORKING CAPITAL: REDUCE INTERNAL THROUGHPUT TIMES

Slow throughput times delay cash collection and impact working capital, for instance:

occur

- Slow order confirmation
- Slow goods issue
- Slow invoicing

Confirm Order

5 days

5 days

Ship Goods

Generate Delivery Document

3 days

2 days

Example above: 600,000 orders take more than 3 days between creation and shipping

Intelligent Apps help you to

determine

- where in the process bottlenecks occur
- reasons for long-runners
- internal best practice •

Example above: Delays occur due to bottlenecks in the process and affect high value orders with higher likelihood

Operationalize: Proactively reduce throughput times **Action Engine** Process Analytics Action Engine
 O Transformation Cen My Inbox ← Prioritize Credit Check Overview A- Signal List Description (-) History Approve pending credit check to increase Creation Date 01/09/19.09:5 01/09/19 11:46 Last Update Status Open Order Number Customer N V449665 K13002

Action Engine Skills help you to proactively speed up cycle times:

- Remove delivery blocks
- **Prioritize orders**
- Etc.

Example above: The skill prioritizes orders with high likelihood of delays. The Transformation Center helps you to measure & document success stories.

- 600,000 orders >3d between order and shipping (\$ 700M)
- 30% reduction (5d average delay)
- 10% return on invested capital

Example above: \$700M * 30% * 10% * 5d delay

= \$ 288K annual savings

Increase Lead conversion rate:

Identify behavior that serves as leverage in future price negotiations

Prioritize campaigns and speed up sales cycles:

Identify reasons for lost discounts (e.g. maverick buying) and act on them

Control Discount Usage:

Analyze in what areas contracts can systematically reduce purchasing spend

Optimize Selling Channels:

Quantify savings potential and prioritize efforts for supplier consolidation

Others:

. . .

Selected Customers applying Celonis in Sales

Case Study – Speed up Cycle Times

Benchmarking different business units, geographies or product groups with each other, quickly allows to isolate systematic issues as well as identify best practices to speed up cycle times and thereby increase conversion rate. Make sure to never lose momentum in your deals again!

Process Mining values & success stories

Process mining use cases

Identified by Kerremans in Gartner (2019)

Process Improvement & Operational Excellence

- developing advanced discovery and analysis algorithms in order to extract knowledge from the event logs
- controlling executed process instances, detecting process variants, detecting process inefficiencies, resource availability
- supporting decision-making and providing suggestions on process optimization

Improve Audit & Compliance

- This is about comparing as-is vs should-be processes
- check the quality of the discovered process model; detect process issues and their frequency; search for their root cause; overall detect violations to the process standards
- Conformance checking happens on the past and complete event log while Compliance checking is online monitoring of processes

Improve Process Automation

- PM provides operational data and supports estimating the outcome of process automation initiatives before running them
- PM supports process analysts to detect automation opportunities
- helps to analyze and stabilizing processes before automating them
- PM can monitor bots to check if they are alive and send notifications if necessary

Support System Migration & IT Operations

- improvement of development, testing, and system error diagnostic
- IT service management (ITSM) related processes can be categorized in this use case
- PM highlights differences and gaps among systems and how processes are executed in different systems

Support Digital Transformation

- There is a big overlap between this use case, operational excellence, and automation. However, there is a big attention to this use case for discovering digitalization possibilities
- PM techniques can enable the creation of the so-called digital twin of an organization by providing full data connection and representing the virtual version of the processes.

PROCESS MINING APPLICATIONS AND USE CASES

Fareed Zandkarimi (M.Sc.) PhD Candidate and Research Assistant Chair of Enterprise Systems University of Mannheim

17.06.2021 ۲۷ خرداد ۱۴۰۰

با سپاس از شما عزیزان و مدیریت محتر م بهفالب که همواره در راستای ترویج فرایندکاوی در ایران تلاش کرده است.